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Summary. Physical exercise has been traditionally consid-
ered with an “androcentric” view, and most of our knowl-
edge on training is derived from studies which mainly in-
cluded male athletes. Nevertheless, several undeniable 
physical and physiological differences exist between wom-
en and men in terms of athletic performance, response and 
adaptations to physical exercise.
The increasingly larger participation of women in a broad 
variety of sports – together with the growing awareness of 
the existence of significant sex-related differences in re-
sponse to training – confirm the need to include sex as a 
biological variable to be considered for an optimal tailored 
exercise intervention.
Identifying and understanding sex-specific differences is 
crucial, both from a clinical point of view, as they could im-
pact exercise rehabilitation and prevention strategies, and 
from a sporting and physiological perspective, in terms of 
improving performances and reducing injuries.
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Introduction

Men and women differ in characteristics that go far be-
yond primary and secondary sexual characters. Men are 
endowed with physical characteristics that make them 
capable of objectively superior performance in sports. 
This is certainly due to social reasons, that in the past 
allowed men greater access to the practice of sports and 
physical activity than women: at the debut of modern 
sports, in the 1896 Olympics, women were excluded 
from any competition, and it took a long time for them 
to be granted the same opportunities as men. The num-
ber of female athletes participating in the Olympic 
Games has increased significantly, from 34% in Atlanta 
1996 to 48% at the last Olympic Games in Tokyo 2020, 
with a high probability of achieving full gender parity 
at the Paris 2024 Olympic Games.1

Even considering all the above, there is no doubt that 
the difference between the two genders in terms of ath-
letic performance is mainly due to the constitutional 
characteristics of the two sexes.

One method that is both objective and straightfor-
ward is to analyze the differences between men and 
women in competitive athletics world records. The per-
formances recorded in athletics (track and field) allow 
the most accurate assessment, since they are less affect-
ed by tactics and by the evolution of materials compared 
to other sports, and are easily quantifiable in terms of 
times and measures. Athletics, moreover, includes vari-
ous specialties, ranging from the pure expression of 
power and coordination (jumps) to speed and endur-
ance. This type of analysis shows a rather significant dif-
ference in the running disciplines, where males achieve 
about 10% shorter times than females, because of high-
er average speeds over both short and long distances. 
For example, excluding the 100 meters for controversies 
related to the homologation of the female record, the 
difference is 10.07% in the 200 meters and 9.26% in the 
marathon.2 In disciplines requiring explosive force 
(mainly jumps, since throws are not comparable, due 
to sex differences in equipment), an even sharper dis-
crepancy emerges, equal to 15-18% in favor of men, in 
line with what can be observed in weightlifting.3

A seemingly small difference of 10% – or one second 
– actually represents a big difference in high-level sport. 
Indeed, males who achieve times or measures equal to 
women’s world records – despite certainly belonging to 
a relatively small elite of athletes – are unlikely to compete 
at the highest levels (World Champions and Olympics).

To understand such differences between women and 
men in sports, it is necessary to analyze the constitu-
tional characteristics of the two sexes.

Sex and gender are separate terms with distinct mean-
ings, although they are often used as synonyms. Sex, 
genetically defined through sex-specific hormones and 
molecules, is a binary feature, with rare exceptions, re-
sponsible for the development of reproductive organs 
and secondary sex characteristics. Gender is a multifac-
torial concept that includes psychosocial self-percep-
tions, social constructs, and cultural attitudes and ex-
pectations that people have about men and women.4 

Since our aim is to discuss the biological differences 
between men and women in relation to physical exercise, 
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the following text will concern sex – rather than gender 
– differences.

Identifying and understanding sex-specific differ-
ences in exercise-induced regulation and adaptations is 
important for the optimization of exercise interventions, 
both from a clinical point of view, as they could impact 
exercise rehabilitation and prevention strategies, and 
from a sport and physiological one, in terms of improv-
ing performances and reducing injuries (figure 1).

Musculoskeletal system

Between men and women, there are some typical con-
stitutional sex differences. While human height and 
weight vary globally, all human populations exhibit the 
same pattern, where on average adult males are 10-15 
cm taller than adult females and have 10-20 kg more 
body weight.5,6 Usually males are taller due to sexual 
selection and females are broader due to natural selec-
tion for childbirth.7 This is mainly due to the more 
rapid skeletal maturation and, therefore, to the earlier 
closure of the growth plates in females. From birth, fe-

males seem to have an advantage of at least two weeks 
compared to men in terms of bone development, despite 
a lower body weight, and this advantage gradually reach-
es two years at the time of puberty, which occurs earlier 
in women. This disparity may depend on the greater 
development and hormone secretion of the ovaries com-
pared to the testes. Both skeletal growth and menarche 
depend on estrogen levels. Prepubertal females have 8 
times the estradiol levels of age-matched males, which 
helps to explain their earlier skeletal maturation and 
growth arrest as well as their earlier onset of puberty 
compared to males.7 Thus, while males continue to grow 
in height, females slow to a stop as they start their 
monthly cycle,7,8 and females who reach menarche rela-
tively late continue to grow at a faster prepubertal rate 
until the onset of menses, and end up being relatively 
taller adults.9 

After peak bone mass is reached, skeletal aging be-
gins. In women, bone loss is markedly accelerated in the 
peri-menopausal period, and then continues at a lower 
rate, whereas in men a persistently lower rate of bone 
loss occurs with aging. Using high-resolution periph-
eral quantitative computed tomography (HR-pQCT), it 

Figure 1. Exercise-related sex-differences in females compared to males.

<: lower, >: higher, AT: adipose tissue, MM: muscle mass, CO: cardiac output, SV: stroke volume, HR: heart rate, VO2 max: maximal oxygen 
uptake, Da-vO2: arterio-venous O2 difference, BP: blood pressure, SVR: systemic vascular resistance, LV: left ventricle.
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artistic gymnastics and free body exercise), while the “X” 
angle worsens performance in throwing disciplines, and 
has a negative action in support exercises. This is one of 
the reasons why in artistic gymnastics women perform 
exercises at the uneven (asymmetric) parallel bars (as 
opposed to the symmetric ones): it’s because the greater 
distance between the bars – made necessary by the great-
er width of the pelvis compared to the shoulders’ – 
would make support even more difficult.

Female athletes seem to be more prone to ligamen-
tous laxity than males, as well as to have an increased 
predisposition (2 to 8 times) for anterior cruciate liga-
ment (ACL) rupture and injury, but the relationship of 
ligamentous laxity with ACL injury is uncertain.17 A study 
assessed that female ski racers were 3.1 times more like-
ly to sustain an ACL disruption than their male counter-
parts.18 Most trauma generally occurs without opposition 
from an opponent. Compared with males, females have 
smaller recess width and anterior cruciate ligament cross-
sectional area, but there is no evidence that these may 
increase the risk of injury.19,20 In football, there also ap-
pear to be gender-specific stress differences in running 
movements (side steps, cross steps, forward accelera-
tions) that produce a different load on the feet (less load 
on the metatarsal and phalanges) than in men. Some 
authors also suggested a link between hormonal fluc-
tuations in women within the menstrual cycle and chang-
es in neuromuscular control and, therefore, ACL injury 
risk, although results in literature are discordant.21-23

Body composition

Sex differences exist in term of body composition (BC), 
with women having relatively more adipose tissue (AT) 
and less muscle mass (MM) than men.24,25 Sex differ-
ences also exist in terms of AT distribution, with women 
having a greater amount of subcutaneous AT (SAT) and 
men having a greater predisposition to accumulate vis-
ceral AT (VAT) at abdominal level.26 VAT correlates with 
an increased cardiovascular and metabolic risk, while 
SAT is associated with a lower risk.27,28

In sport, BC assessment is an extremely important 
practice, given its many implications on the health and 
performance status of the athletes.29 For example, a 
higher body fat percentage negatively correlates with the 
quality of movement and physical performance of sports 
that involve sprinting or jumping.30 Furthermore, MM 
contributes to the production of strength and power31 
and total body water influences cognitive neuromuscu-
lar functions.32

Analyzing bio-impedance data, male athletes have a 
lower percentage of AT than women. High-level athletes 
have on average a percentage of AT between 15 and 18%, 
but with values that can fluctuate, in endurance athletes, 

was possible to precisely asses in vivo bone microarchi-
tecture and volumetric bone mass density (BMD): young 
men had a higher osteoclastic resorbing activity in cor-
tical bone than young women, but trabecular number 
and thickness were higher in young men than in young 
women and, getting older, total bone area resulted being 
larger in men than in women.10,11 By applying an engi-
neering technique called finite element analysis (FEA) 
to HR-pQCT readings, it was possible to calculate the 
mechanical strength of the bone and to determine that 
bone strength was 34-47% greater in young men than 
in young women; consequently, the prevalence of os-
teoporosis and osteoporotic fractures is greater among 
the latter.10,12

Since different sports include a complexity of multi-
articular movements and stimuli which put bones under 
various types of loads, the role of physical activity in 
preventing osteopenia and osteoporosis should be fur-
ther analyzed. A Finnish study comparing dancers, 
squash players and speed skaters to non-athlete active 
and non-athlete sedentary referents demonstrated that 
all three groups of athletes had significantly higher BMD 
values at the lumbar spine, proximal tibia, femoral neck 
and calcaneus than the sedentary reference group.13

From an anatomical point of view, women typically 
have wider pelvis, shorter legs, more oblique femurs, 
larger ratio of leg weight to body weight and greater 
carrying angle of the arm.14,15,7

Specifically compared to men, women usually have 
shorter extremities and a relatively longer trunk. These 
different structural proportions may affect technique 
and ability in specific sport disciplines, as the mean 
height of the center of gravity of a woman is lower than 
that of a man. In particular, females seem to have an 
advantage in balance sports, while activities such as high 
jump and long jump, in which a higher center of grav-
ity at take-off will enhance performance, may slightly 
favor male athletes.

The major differences between a male and female 
skeleton concern the bones of the pelvis. In women, the 
width of the pelvis is larger relatively to the length of 
the trunk; the iliac wings are wider and more inclined 
compared to men; and the upper opening of the pelvis 
is transversely elliptical. The branches of the pubic bone 
in women form an angle of 90-100°, in men one of 70-
75°. Due to the greater width of the pelvis, women have 
a physiological compensatory valgus of the lower limbs, 
which contributes to the lowering of the center of grav-
ity mentioned above.

Women also have narrower shoulders. Furthermore, 
women seem to have a hyperextensibility and an “X” 
conformation of the angle between the arm and forearm 
(elbow carrying angle), which is greater in females than 
in males.16  The resulting greater joint mobility represents 
an advantage in sports with artistic expression (such as 
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between 6 and 8%, and in volleyball and basketball 
players between 18 and 24%.

Regardless of gender, endurance athletes, who most-
ly exploit aerobic metabolism, have a lower fat free mass 
(FFM) than speed/power or team sports athletes, in 
whom glycolytic energy production mechanisms are 
privileged.33

Bio-impedance data of a very large population of 
athletes, male and female, was analyzed in many studies 
in the past, and the optimal values of BC and differenti-
ated phase angle have been defined for male and female 
athletes practicing different sports, underlining the use-
fulness of the phase angle as an indicator of optimal BC 
and improved athletic performance specific to sport and 
gender.34,15

Women have lower absolute and relative MM com-
pared to men and a different muscle-fiber composition. 
In women, type I muscle fibers dominate, characterized 
by slow contractions, low force generation and high fa-
tigue resistance, predestining them for endurance per-
formance. On the other hand, men seem to have a 
greater amount of type IIa muscle fibers, leading to im-
proved rapid strength endurance performance.35

Understanding the sex differences in fatigability 
could allow to design more effective exercise regimens 
in athletes, and should be considered when prescribing 
practical exercise regimens for patients with muscle at-
rophy. For example, the vastus medialis obliquus (VMO) 
and vastus medialis longus (VML) are less fatigable in 
women than in men, in consideration of their relatively 
high percentage of type I fibers.36,37

Males possess a greater quantity of MM than females, 
which contributes to greater maximal strength, since 
muscle strength is closely related to the section of the 
muscle.38 Muscle sex different composition can be main-
ly attributed to the higher testosterone level – together 
with its anabolic action – in men. In fact, until puberty 
MM and sports performances are similar in males and 
females; then, after the hormonal boost and the sudden 
increase in testosterone in males during adolescence 
there is a clear differentiation between men and women 
in terms of MM, strength and sports performances.39 
From this point of view, however, it is interesting to note 
that the endogenous levels of testosterone can vary with 
training, with the highest levels of testosterone in most 
trained and best-performing athletes of both sexes.40

The lower amount of MM, together with its peculiar 
anatomical structure and the hormonal influences, are 
possible causes why female athletes seem to have an 
increased predisposition (2 to 8 times) to ACL injury,17 
as mentioned above.

The differences explained result in a different re-
sponse to exertion from men and women. From a prac-
tical point of view, this implies the need to optimize the 
training programs of each discipline according to the 

athlete’s sex. It is known that for the same duration and 
intensity of exercise, women show greater endurance 
and better recovery from exertion. This, combined with 
the fact that women tend to lose muscle strength faster, 
implies that they are at the same time more capable – 
and more in need – of more continuous and consistent 
strength training sessions. In a discipline with mixed 
components (requiring both anaerobic and aerobic ef-
forts), such as the 400 and 800 meters, for example, 
strength workouts are more frequent throughout the 
competitive season in women than men.41,42

Sex-related differences may be considered also in the 
rehabilitation setting, in order to personalize exercise 
interventions. As an example, women’s greater ligamen-
tous laxity must be compensated by greater skeletal mus-
cle tone. While it is true that skeletal muscle in women 
is more efficient than in men in long duration efforts (at 
the same intensity and duration), women’s lower maxi-
mal strength implies that women must work at higher 
intensity and more frequently (with the help of their 
better muscle recovery). This is especially true in sports 
characterized by abrupt changes of direction or explosive 
efforts, such as soccer and high jump, where ACL injury 
and patellofemoral instability, respectively, are typical 
issues for the female athletes that are prevented and treat-
ed with intense thigh muscle strengthening.43,17

Respiratory system

Sex-based differences in the anatomy and function of 
the human respiratory system also exist, and may affect 
airway responsiveness, ventilation, and gas exchange, 
especially during conditions of high ventilation rates, 
such as exercise.44

Females typically have smaller lung volume (even 
when adjusted for height and body size), narrow airway 
diameters and different lung geometry relative to males.45

These morphological sex differences impact the de-
velopment of flow, the regulation of lung volume, the 
pressure swings and the consequent work of breathing, 
and they become critically important during dynamic 
exercise.

Smaller lung volumes and lower maximal expiratory 
flows result in women having a relatively reduced ven-
tilatory capacity and a lower respiratory efficiency than 
men.45

This may predispose women to be more susceptible 
to respiratory system limitations during exercise than 
their male counterparts. Specifically, women are more 
likely to experience expiratory flow limitation, and have 
a higher mechanical work of breathing and oxygen cost 
of breathing than man, that becomes even twice that of 
men when ventilation is above 90 L·min-1.46 The greater 
oxygen cost of breathing in women means that a greater 
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fraction of total oxygen uptake (VO2) and, thus, cardiac 
output (CO), is directed to the respiratory muscles. The 
greater demand for blood supply at respiratory level is 
likely to have detrimental effects on locomotor muscle 
blood flow, thus affecting exercise performance.

Furthermore, reproductive hormones – estrogen and 
progesterone – can influence ventilation, metabolism, 
thermoregulation, lung inflammatory processes and 
pulmonary function during exercise.40,47 Respiratory 
function and symptoms are known to be affected by the 
different phases of the menstrual cycle, and tend to get 
worse during the mid-luteal to mid-follicular phases. 
Fluctuations in asthmatic symptoms are also reported 
during the menstrual period, possibly due to hormonal 
influence on airways.48 Estrogens potentially influence 
the outcomes of developmental, inflammatory and dis-
ease processes by influencing cytokines and inflamma-
tory mediators in the lung through both up-regulation 
(interleukin (IL)-1β, IL-6, type I interferon (IFN), tumor 
necrosis factor (TNF)-α, NF-κB and toll-like receptor 8) 
and down-regulation/inhibition (transforming growth 
factor (TGF)-β1 and IL-10).49

Progesterone makes the contractility and the relax-
ation of bronchial smooth muscle decrease and increase, 
respectively; it is positively associated with peak expira-
tory flow rate during the luteal phase of the menstrual 
cycle. Testosterone is generally proposed to have protec-
tive roles, because it seems to cause bronchial tissue 
relaxation, to reduce the response to histamine and to 
attenuate airway inflammation.

Cardiovascular system

Numerous cardiovascular adjustments occur during ex-
ercise, so that CO rises linearly as a function of VO2 to 
meet the increased demands of muscular work. There 
are several genetic, anatomical and hormone sex-related 
differences that impact the hemodynamic and struc-
tural cardiovascular response to exercise.50-52

From a hemodynamic point of view, women have 
lower CO.53 CO is the product of heart rate (HR) and 
stroke volume (SV). Females have lower SV and smaller 
increase in SV in response to exercise, mainly due to 
their smaller cardiac size/mass, so the main mechanism 
to enhance CO in women is the increase in HR. Al-
though increasing HR does enhance CO, maximum HR 
during exercise has been shown to be similar between 
females and males,54,55 regardless of fitness levels, and 
to depend mainly on age rather than on gender, with 
advancing age being associated with a decrease in peak 
HR in both sexes.56,57

Women have lower maximal oxygen uptake (VO-
2max) values, approximately 80% of age- and training 
status-matched males.55 VO2max is the best objective 

measure of aerobic fitness. VO2max is a function of CO 
and total system arteriovenous O2 difference (Da-vO2), 
thus the ability to increase one or both these variables 
determines aerobic capacity and VO2 max is a valid in-
dex of the integrity of cardiovascular function.58 Wom-
en’s lower CO is the main reason for their lower VO-
2max, together with differences in peak Da-vO2, with 
men having higher Da-vO2.59 Blood volume, hemoglo-
bin, and hematocrit values are 15-20% lower in women, 
including elite athletes, and sex-based differences exist 
in pulmonary structure and respiratory function, result-
ing in a lower oxygen supply for the same quantity of 
blood flow than men.44

Females have lower systolic and diastolic peak blood 
pressures (BP) than males.53 BP is the result of CO and 
systemic vascular resistance (SVR). During physical activ-
ity, peripheral vasodilation in the capillary beds of mus-
cle tissue leads to a decrease in SVR. In healthy subjects, 
CO rises, avoiding BP drops that would otherwise impair 
the perfusion of organs, such as the brain. Female ath-
letes experience a greater drop in SVR because of a low-
er sympathetic activity, a higher parasympathetic activ-
ity, and their circulating sex hormones, which all con-
tribute to a more vasodilatory state. As reported above, 
women have lower CO.60 This could be the reason why 
BP is often lower in women than in men of similar age 
at rest, during exercise and in recovery after exercise, 
especially when recovery is performed inactively,61 ex-
plaining the higher occurrence of post-exercise hypoten-
sion in women.62

From a structural point of view, regular physical train-
ing induces cardiac remodeling and structural adapta-
tions to improve SV reserve. Trained women exhibited 
smaller left ventricular wall thickness, cavity size and 
mass compared to age- and fitness-matched men.63-65 
Moreover, women have been reported to maintain a 
normal left ventricular geometry, with a relatively larger 
increase of cavity dimensions than men, evidently de-
pending on the type of sport practiced.66 These sex-re-
lated differences in cardiac adaptations may be partially 
explained by the higher concentrations of endogenous 
anabolic hormones in males and the higher hypertro-
phic potential of male cardiac tissue compared to wom-
en. Heart hypertrophy is a rare finding in female athletes, 
therefore a left ventricular wall thickness greater than 12 
mm should be carefully evaluated, to exclude other pos-
sible etiologies.

Heart size accounts for many of the sex-based differ-
ences in cardiac functional and structural responses, 
however, it may not entirely account for sex-related car-
diovascular differences, as they tend to shrink when 
parameters are normalized for body surface area and 
lean body mass, suggesting that other factors, such as 
different BC, may play a role, and that indexed param-
eters should be analyzed, rather than absolute values.
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Metabolism

Sex differences affect both basal and functional metab-
olism. At rest, women have a 10% lower basal metabo-
lism.67 This is due to the women’s more efficient thermal 
insulation, determined by the higher quantity of SAT 
and, therefore, by the lower heat transfer, and to the 
different percentage of AT and MM. Since muscles have 
a higher O2 consumption than AT, both at rest and dur-
ing physical exercise, the lower percentage of MM in 
women determines a lower energy expenditure. Further-
more, it seems that androgenic steroids perform a spe-
cific impulse action on the basal metabolic rate, which 
could help explain its increase.68

During endurance exercise, women have been shown 
to oxidize proportionally more lipids and fewer carbo-
hydrates than males, whereas higher carbohydrate oxida-
tion was observed in both sedentary and athletic men. 
Thus, men rely more on carbohydrates, whereas women 
rely more on lipids to sustain moderate aerobic exer-
cise.69 These metabolic sex differences are partially medi-
ated by higher estrogen concentrations in females, that 
affect body composition – with female having a greater 
percentage of AT – and are also responsible for their 
higher fat metabolism.70

Beneficial effects of physical activity – including a 
more efficient utilization of fat stores during exercise, a 
more efficient adjustment of energy expenditure during 
recovery, and an improved insulin sensitivity – were 
shown to be most pronounced in females. This may due 
to the fact that females are likely to utilize more fat and 
less protein as an energy source during exercise.71

Thermoregulation

Human thermoregulatory responses to heat stress in-
clude two main mechanisms of heat dissipation: in-
creased skin blood flow and sweating. Sex differences 
seem to exist in thermal responses to exogenous and 
endogenous heat load and heat loss during exercise.72 
Many factors seem to contribute to these sex differences, 
including anthropometric, hormonal and functional 
factors, with women having a larger ratio of body surface 
to body mass and greater SAT.

It appears that women’s sweating response to heat 
load is smaller than that of men, but they can maintain 
their core body temperature on a similar level to that of 
men because of greater vasomotor adaptations. In ad-
dition, in women, thermoregulatory responses vary over 
the menstrual cycle, due to the influence of the repro-
ductive hormones.73 In the luteal phase of the menstru-
al cycle, the thermoregulatory control of both sweating 
and cutaneous vasodilation is shifted by ~0.5 °C towards 
higher core body temperatures. 

Cutaneous vasodilation and sweating during heat 
stress lead to a marked redistribution of blood flow to 
the periphery. If heat stress is combined with exercise, 
the resulting “competition” between muscle and skin 
for a relatively limited CO is considered to be a major 
contributor to increased fatigue and decreased exercise 
tolerance relative to a cooler environment.74 The in-
crease in blood flow directed to the skin results in a 
lower venous return, that is somehow mitigated by the 
muscle pump during exercise. If an individual stops 
suddenly and stands still, the lack of muscle pump, to-
gether with the lower SVR, can result in a transient de-
crease in cerebral perfusion pressure that can contribute 
to symptoms of orthostatic intolerance. During exercise 
in the heat, both fatigue and orthostatic intolerance are 
more likely to occur in women.75 Women tend to have 
smaller blood volume, lower CO, greater drop in SVR 
(because of a lower sympathetic activity), higher para-
sympathetic activity, and circulating sex hormones, 
which all contribute to a more vasodilatory state76,77 
compared with men of similar age:78 all mechanisms 
that contribute to both lower resting BP and lower or-
thostatic tolerance.75

Brain and nervous system

In mammals, sex differences are evident in many aspects 
of brain development, brain function and behavior. Al-
though the male brain is 10% larger than the female 
one, it does not impact intelligence,79 as the number of 
neurons is similar in men and women. Intelligence, in 
fact, is not determined by brain mass, but by the number 
of neurons and the quality of neuronal connections.80 
Since birth, females have a smaller cortical surface, light-
er cortex and smaller volumes of white mass, without 
differences in the cerebral convolutions.

Gender-specific differences in brain anatomy and 
function begin as early as the embryonic stage, when 
male sex hormones affect brain development.81 How-
ever, male sex hormone is not the only reason of sex 
differences in brain development. Genes on the Y chro-
mosome stimulate the multiplication of dopaminergic 
neurons in the brain, which are therefore more numer-
ous in men than in women. These neurons appear to 
contribute to the development of special motor skills 
and behaviors (eg., throwing). From a sports point of 
view, this could be one of the reasons why men are more 
willing to take risks, to tend more towards physical ag-
gression, to have a more pronounced ability to orient 
themselves, as well as better throwing skills than women. 

Exercise participation remains low, despite clear ben-
efits. A study conducted on rats documented that the 
acquisition and maintenance of voluntary wheel run-
ning involve unique neural substrates in the dorsal 
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striatum that vary by sex, suggesting the need for sex-
specific strategies to promote exercise.82 

Furthermore, a gender difference has been shown in 
learning basketball tactical actions from video modeling 
and static pictures, with females benefiting particularly 
from video modeling than from static pictures compared 
to men, suggesting that a consideration of a learner’s 
gender is crucial to further boost learning of basketball 
tactical actions from dynamic and static visualizations.83 

Conclusion

Most of the current knowledge about responses and ad-
aptations to exercise are derived from studies conducted 
predominantly in the male athletes, and then translated 
to women without evidence, ignoring the undeniable 
sex and gender differences. The increasingly larger par-
ticipation of women in a broad variety of sport, togeth-
er with the growing awareness of the existence of sig-
nificant sex-related differences in response to training, 
seem to be promising factors to satisfy the urgent need 
to make a more complete interpretation of the specific 
physiological characteristics of female and male athletes. 

Inclusion of sex as a biological variable to be consid-
ered for an optimally tailored exercise prescription seems 
to be mandatory, since biological sex affects properties 
of the physiological systems involved in exercise and in 
the adaptations to chronic exercise, with crucial implica-
tions for both athletic performance and clinical out-
comes.
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